ASCO 2020 Review Head and Neck Cancer

Eric Sherman, M.D. Associate Attending Physician Head and Neck Cancer Service Memorial Sloan-Kettering Cancer Center

Disclosures

- Consulting
 - Eisai
 - Regeneron
 - Loxo Oncology/Eli Lilly
- Research
 - Regeneron
 - Loxo Oncology/Eli Lilly

Outline

- H&N Squamous Cell Cancer
 - Locally Advanced Disease
 - Metastatic Disease
- Thyroid Cancer

Head and Neck Cancer Locally Advanced Disease Transoral Robotic Surgical Resection followed by Randomization to Low- or Standard-dose IMRT in Resectable p16+ Locally Advanced Oropharynx Cancer: A trial of the ECOG-ACRIN Cancer Research Group (E3311)

Robert Ferris

Study Design

 To evaluate in p16+ newly diagnosed OPC, Transoral Surgery followed by risk-adjusted post-operative therapy

	Pathologic Features
Arm A	Negative Margins (>3mm) NO-N1, No ENE
Arm B	Close Margins (<3mm), 2-4 (+) Nodes,
Arm C	\leq 111111 EINE, PINI/LVI
Arm D	Positive Margins, >1mm ENE, \geq 5 (+) Nodes

 Note that this is not comparable to chemo/RT due to Stage Migration

Trial Schema

Results

	N	2-year PFS	90% CI	Recurrences	LRF	DM
Arm A	37	93.9%	87.3-100	2	1	1
Arm B	102	95.0%	91.4-98.6	4	2	2
Arm C	104	95.9%	92.6-99.3	4	0	4
Arm D	110	90.5%	85.9-95.3	7	4	3

There were 2 Treatment related deaths
1 Surgical and 1 Arm D

Conclusion

- We can do large studies with Surgery as long as Surgery is the only option
- While PFS comparing post op 50 Gy vs 60 Gy looks about equal in a subgroup of patients
 - Not a non-inferiority study, so hypothesis generating
 - Do we really care?
 - QOL data was not presented
- Arm A treated with Surgery alone
 - Lowest risk group but looks possible worse than Arms B and C
- 2 year PFS in all groups look great
 - Patient Selection?
 - TORS approach Superior to chemo/RT?
 - Stage Migration?

Head and Neck Cancer Locally Advanced

Cisplatin HD every 3 weeks Vs Cisplatin LD weekly

Nasopharynx (Hu Liang) weekly vs q 3 weeks

Outcomes fairly similar between groups

Nasopharynx (Hu Liang) weekly vs q 3 weeks

Grade 3-4 Adverse Events

	Weekly (n=249)	Every 3 Weeks (n=260)	P-value
Leukopenia	68 (27.3%)	42 (16.2%)	0.002
Thrombocytopenia	12 (4.8%)	3 (1.2%)	0.015
Nausea/Vomiting	28 (11.2%)	33 (12.7%)	0.615
Mucositis	89 (35.7%)	86 (33.1%)	0.527
Weight Loss	8 (3.2%)	5 (1.9%)	0.357

HNSCC (Noronha) Weekly vs q 3 weeks

Phase II/III Trial of Postoperative **Chemoradiotherapy Comparing 3-**Weekly Cisplatin with Weekly **Cisplatin in High-risk Patients with** Squamous Cell Carcinoma of the Head and Neck (JCOG1008) **Kiyota** Japanese Clinical Oncology Group

Trial Design

Trial Design

Multi-institutional randomized phase II/III Trial 28 institutions from JCOG-HNCSG

Post-operative high-risk SCCHN

- Pathological Stage III/IV
- Microscopically positive margin and/or ENE
- oral cavity, larynx, oropharynx, hypopharynx

Adjustment factors

- Microscopically positive
 margin and/or ENE
- Institution

Randomization 1:1 Arm A: 3-Weeky CDDP+RT

- CDDP 100 mg/m², q3wks
- RT* 66 Gy/33Fr

Arm B: Weekly CDDP+RT

- CDDP 40 mg/m², qwk
- RT* 66 Gy/33 Fr

* 3D conformal RT or IMRT was allowed at institutional discretion

ENE: extra-nodal extension RT: radiation therapy, IMRT: intensity modulated RT

DSMC recommended terminating the trial early

Local Relapse-free Survival: LRFS (ITT)

Acute Non-hematological Toxicities*

Non-hematological	Arm A: 3-Weekly CDDP+RT (N=129)		Arm B: Weekly C	DDP+RT (N=122)
	Any grade	Grade3-4(%)	Any grade	Grade3-4
Mucositis	118 (91.5%)	30 (23.3%)	113 (92.6%)	34 (27.9%)
Dysphagia	75 (58.1%)	24 (18.6%)	59 (48.4%)	14 (11.5%)
Dermatitis	118 (91.4%)	19 (14.7%)	112 (91.8%)	14 (11.5%)
Nausea	87 (67.4%)	17 (13.2%)	57 (46.7%)	6 (4.9%)
Infection	25 (19.4%)	15 (11.6%)	18 (14.8%)	8 (6.6%)
Hyponatremia	119 (92.2%)	13 (10.1%)	100 (82.0%)	13 (10.7%)
Renal impairment	51 (39.5%)	0 (0%)	36 (29.5%)	0 (0.0%)
Hearing impairment	22 (17.1%)	5 (3.9%)	9 (7.4%)	2 (1.6%)
Peripheral neuropathy	7 (5.4%)	0 (0.0%)	2 (1.6%)	0 (0.0%)

- *Grade 3 or more toxicities which occurred in ≥10% patients or toxicities of special interest

PRESENTED AT: 2020ASCO ANNUAL MEETING

#ASCO20 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Naomi Kiyota, MD, PhD, Kobe University Hospital, Japan, E-mail: nkiyota@med.kobe-u.ac.jp 20

Characteristics

Characteristic		3-Week CDDP (132)	Weekly CDDP (129)
	Oral Cavity	61	60
Duine ann Cita	Larynx	12	11
Filling Site	Oropharynx	14	21
	Hypopharynx	45	37
	T1	13	7
Pathologic T	Т2	26	40
	Т3	25	23
	Τ4	68	59

Characteristics

Characteristic		3-Week CDDP (132)	Weekly CDDP (129)
	Oral Cavity	61	60
Primary Sito	Larynx	12	11
Prindry Site	Oropharynx	14	21
	Hypopharynx	45	37
	T1	13	7
Pathologic T	Т2	26	40
	Т3	25	23
	Т4	68	59

NOTE – Unequal distribution of Oropharynx/Hypopharynx cancers as well as T4 tumors

Cisplatin every three weeks versus cisplatin or carboplatin with definitive RT for HNSCC

> McCusker University of Maryland

Methods

- Patients dx 2004-2011 with stages III-VI HNCC in linked SEER-Medicare Database
- Confined to oropharynx, hypopharynx, or larynx
- Definitive Radiation Therapy

Overall Survival

Forest Plot with HR's estimated by the propensity score weighted Cox regression model

			Hazard Ratio [95% CI]	P Value
Year Dx 2011 vs 2004-05	-		0.68 [0.52-0.88]	0.004
Year Dx 2009-10 vs 2004-05		-	0.84 [0.69-1.02]	0.08
Year Dx2006-08 vs 2004-05			0.95 [0.80-1.11]	0.51
Charlson CI before Dx 2 vs 0		- _	1.73 [1.45-2.06]	< 0.001
Charlson CI before Dx 1 vs 0			1.55 [1.32-1.82]	< 0.001
Married vs Not	_ - -		0.74 [0.64-0.85]	< 0.001
Age at Dx 73-77 vs 66-68			- 2.12 [1.73-2.61]	<0.001
Age at Dx 69-72 vs 66-68		- _	1.74 [1.42-2.14]	< 0.001
Age at Dx 78+ vs 66-68			1.21 [0.99-1.47]	0.06
Other Race vs White		•	1.05 [0.76-1.46]	0.75
Black vs White			1.23 [0.98-1.54]	0.08
Female vs Male			0.86 [0.73-1.01]	0.07
LDC vs HDC		-	1.35 [1.06-1.72]	0.02
CB vs HDC		- _	1.41 [1.12-1.76]	0.003
RT alone vs HDC			- 2.10 [1.68-2.61]	< 0.001
	0.5 0.75 1 Hazar	.0 1.5 2.0 d Ratio	3.0	

Conclusion

- After 2 phase III randomized studies showing inferiority by toxicity or efficacy with weekly CDDP compared to 3-week, a study is now positive
- All studies have their flaws
- Further studies need to be done (NRG)
 Question about enthusiasm for these studies
- Standard of care now -

Argue should be HD 3-week Cisplatin

Randomised Phase III study of Dysphagia-Optimised Intensity Modulated Radiotherapy (DO-IMRT) versus Standard IMRT (S-IMRT) in Head and Neck Cancer

Christopher Nutting

Background

- Persistent swallowing problems after chemo/RT for pharynx cancer common
- Hypothesized reduced dose to the pharyngeal constrictor muscles would improve swallowing function
 - Volume of the superior & middle pharyngeal constrictor muscle or inferior PCM outside the high-dose clinical target volume was set a mandatory mean dose constraint <50Gy

Endpoints

- Primary Outcome
 - Diff in mean MD Anderson Dysphagia Inventory (MDADI) composite score at 12 months after treatment completion
- Secondary endpoints
 - Multiple QOL
 - Tumor control and overall survival
- Sample Size -> 102
 - Detect 10 point improvement in MDADI score

MDADI Composite Score Over Time

Improvement of 7.2 by 12 months (p=0.037)

Conclusion

- Change in IMRT fields lead to improvement in swallowing function
- No difference in clinical cancer outcomes
 Small study, so not able to prove noninferior
- Changing Radiation Fields can be as important as dose reduction

Randomized studies in Radiation are feasible

Head and Neck Cancer Metastatic

Keynote-048

Harrington

Protocol-Specified Final Results of the KEYNOTE-048 Trial of Pembrolizumab as First-Line Therapy for Recurrent/ Metastatic Head and Neck Squamous Cell Carcinoma (R/M HNSCC)

Danny Rischin¹, Kevin Harrington,² Richard Greil,³ Denis Soulières,⁴ Makoto Tahara,⁵ Gilberto de Castro,⁶ Amanda Psyrri,⁷ Neus Basté,⁸ Prakash Neupane,⁹ Åse Bratland,¹⁰ Thorsten Fuereder,¹¹ Brett GM Hughes,¹² Ricard Mesia,¹³ Nuttapong Ngamphaiboon,¹⁴ Tamara Rordorf,¹⁵ Wan Zamaniah Wan Ishak,¹⁶ Yayan Zhang,¹⁷ Fan Jin,¹⁷ Burak Gumuscu,¹⁷ Barbara Burtness¹⁸

¹Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; ²The Institute of Cancer Research/The Royal Marsden NHS Foundation Trust National Institute of Health Research Biomedical Research Centre, London, UK; ³Paracelsus Medical University, Salzburg Cancer Research Institute, and Cancer Cluster Salzburg, Salzburg, Austria; ⁴Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada; ⁵National Cancer Center Hospital East, Kashiwa, Japan; ⁶Instituto do Cancer do Estado de Sao Paulo, Sao Paulo, Brazil; ⁷National Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece; ⁸Vall d'Hebron University Hospital, Barcelona, Spain; ⁹University of Kansas Medical Center, Kansas City, KS, USA; ¹⁰Oslo University Hospital, Oslo, Norway; ¹¹Medical University of Vienna, Vienna, Austria; ¹²Royal Brisbane and Women's Hospital and University of Queensland, Brisbane, QLD, Australia; ¹³Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain; ¹⁴Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; ¹⁵University Hospital, Zurich, Switzerland; ¹⁶University Malaya, Kuala Lumpur, Malaysia; ¹⁷Merck & Co., Inc., Kenilworth, NJ, USA; ¹⁸Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA

Presented By Danny Rischin at 2019 ASCO Annual Meeting

Keynote-048 Design

- Total of 882 subjects randomized
- Chemo/Pembro arm was held for 2 months so it has a few less patients

Summary of Overall Survival Keynote 048

Population	HR (95% CI)		
Pembrolizumab monotherapy vs EXTREME			
PD-L1 CPS <u>></u> 20	0.58 (0.44-0.78)		
PD-L1 CPS \geq 1	0.74 (0.61 – 0.90)		
Total Population	0.83 (0.70 – 0.99), p=0.0199		
Pembrolizumab + chemotherapy vs EXTREME			
PD-L1 CPS <u>></u> 20	0.60 (0.45-0.82); p=0.0004		
PD-L1 CPS ≥ 1	0.65 (0.53-0.80); p<0.0001		
Total Population	0.72 (0.60 – 0.87)		

If no p-value, statistical testing was not performed

NO BENEFIT WITH PFS IN ANY ARM

First Subsequent Therapy Following Progression of Disease

PFS2: Initially Randomized, Pembro vs EXTREME, CPS ≥20 Population

PFS2: Initially Randomized, Pembro vs EXTREME, CPS ≥1 Population

Similar Data with comparison of Pembro+Chemo vs EXTREME

First Subsequent Therapy

	Pembro Monotherapy	Pembro + Chemotherapy	EXTREME
n (%)	n = 301	n = 281	n = 300
Any new anticancer treatment ^a	148 (49.2)	115 (40.9)	159 (53.0)
Chemotherapy	135 (44.9)	88 (31.3)	102 (34.0)
EGFR inhibitor	59 (19.6)	37 (13.2)	19 (6.3)
Immune checkpoint inhibitor	6 (2.0)	12 (4.3)	50 (16.7)
Other immunotherapy	1 (0.3)	0 (0.0)	6 (2.0)
Kinase inhibitor	1 (0.3)	7 (2.5)	1 (0.3)
Other	2 (0.7)	1 (0.4)	2 (0.7)

Conclusion

- <u>Pointless and misleading study</u> done to try show a PFS benefit when initial study did not
- Data showing benefit after immunotherapy with chemo not shown
- Data showing how the subset of patients who received immunotherapy after EXTREME not shown
- Note
 - Initial Protocol only included PFS as primary endpoint. Changed in middle of study
 - Still not data how CPS 0 or CPS 1-19 did

Low-Cost oral metronomic versus intravenous chemotherapy in recurrent/metastatic/inoperable HNSCC Minon

Tata Memorial Hospital, India

Background

- Standard Treatment
 - EXTREME Cisplatin/5FU/Cetuximab
 - Keynote048 Cisplatin/5FU/Pembrolizumab
 - FDA Cisplatin-Based Therapy
- Low/Middle Income Countries
 - Rare access to these agents
 - Even IV Treatment may not be accessible

Phase II study at Tata Memorial Hospital

 Oral Methotrexate/Celecoxib vs IV Cisplatin
 Favorable for Oral Regimen

Study Design

Phase III, Open label, Randomized Non-Inferiority Stratification: Site, prior Rx Primary Endpoint: OS Secondary Endpoint: PFS,RR, Toxicity, QoL

Overall Survival

- 6-month OS (ITT)
 - IVC Arm: 50.89%
 - OMC Arm: 62.26%
 - Non-inferiority: p<0.001</p>
 - Superiority: p=0.026
- Response Rate

 IVC: 9.6%
 OMC: 13.1%

Author	Drugs	Ν	Overall Response	Survival median (months)
Jacobs	CDDP	83	17%	5.0
	5-FU	83	13%	6.1
	CDDP/5-FU	79	32%	5.5
Forastiere	Methotrexate	88	10%	5.6
	Carboplatin/5-FU	86	21%	5.0
	CDDP/5-FU	87	32%	6.6
Clavel	CDDP	113	15%	5.3
	CDDP/5-FU	116	31%	6.2
	CDDP/MTX/Bleo/Vincr	127	34%	8.2

Efficacy and tolerance of carboplatin-cetuximab in patients with metastatic/recurrent HNSCC unfit for EXTREME Le Roy Hospitaux de Paris

Background/Population

- Retrospective Review at 3 French academic hospitals 2007-2017
- Primary Endpoint is overall survival

- 103 Patients
- Median Age is 63 years old
- PS 2-3: 40%

Efficacy Carboplatin/Cetuximab

- Overall Response Rate of 39.1%
- Median Overall Survival of 7.2 months
 - PS 0-1: 10.1 months
 - PS 2-3: 4.6 months
- Median PFS of 3.7 months

Conclusion

- There is also an older study by Hitt with cetuximab and paclitaxel showing a > 50% response rate
- These studies question the need for cisplatin and EXTREME showing good activity in patients receiving single agent chemotherapy with or without a targeted therapy (cetuximab)

Thyroid Cancer

Clinical activity of the RET inhibitor pralsetinib in patients with RET fusion+ solid tumors Subbiah

Background

- RET fusion genes seen in 10-20% of papillary thyroid cancers
 - Less frequent in aggressive disease
- RET mutations are seen in 50-60% of medullary thyroid cancers (somatic and germline)
- Standard therapies that target RET (vandetanib, cabozantinib, etc...) have significant toxicities related to concurrent VEGFR targeting
- New drugs being developed that selectively target RET

Pralsetinib RET fusion thyroid cancer

Papillary thyroid carcinoma Poorly differentiated thyroid cancer

Best response, (response evaluable), %	RET fusion-positive thyroid cancer (n=11) [†]
ORR	91
(95% CI)	(59–100)
PR	91
SD	9
PD	0
DCR	100
(95% CI)	(72–100)

Selpercatinib in patients with RET-altered thyroid cancers

Manisha Shah

Selpercatinib Pretreated MTC

	Cabozantinib
	(n=55)
ORR by IRC, % (95% CI)	69 (55–81)
Best response by IRC, n (%)	
Complete response (CR)	5 (9)
Partial response (PR)	33 (60)
Stable disease (SD)	14 (26)
Progressive disease (PD)	1 (2)
Not evaluable (NE)	2 (4)

Data cutoff: 16-Dec-2019. For each patient, the maximum change in tumor size, defined as the best % change from baseline in the sum of diameters for all target lesions, is represented by a vertical bar in the waterfall plot. 7 patients are not shown as 2 discontinued prior to post-baseline imaging assessments, and 5 had non-measurable disease at baseline. Abbreviations: IRC, independent review committee; ORR, objective response rate.

Selpercatinib Pretreated Follicular Cell Thyroid Cancer

Selpercatinib Pretreated MTC

	Pretreated (vandet/cabo)	Treatment Naïve	
Number	55	88	
Best Overall Response	69% (9% CR)	73% (11% CR)	
Progression-free Survival			
Median, months (95% CI)	NE (24-NE)	24 (NE-NE)	
Median follow up, months	17	11	
1-Yr PFS Rate % (95% CI)	82 (69-90)	92 (82-97)	

*Independent Review of Scans

Selpercatinib RET-fusion Thyroid Cancer

	Previously Treated	
Number	19	
Best Overall Response	79% (5% CR)	
Progression-free Survival		
Median, months (95% CI)	NE (10-NE)	
Median follow up, months	19	
1-Yr PFS Rate % (95% CI)	61 (33-81)	

*Independent Review of Scans

Conclusion

- These new RET inhibitors represent the new standard of care for RET altered thyroid cancer
- Selpercatinib has been FDA approved already for all lines of therapy
- There are still questions about sequencing of treatment and mechanisms of resistance

Thank You!

"I'm honored to share my research at your virtual academic conference."